CXCR2 chemokine receptor antagonism enhances DOP opioid receptor function via allosteric regulation of the CXCR2–DOP receptor heterodimer
نویسندگان
چکیده
Opioid agonists have a broad range of effects on cells of the immune system, including modulation of the inflammatory response, and opioid and chemokine receptors are co-expressed by many white cells. Hetero-oligomerization of the human DOP opioid and chemokine CXCR2 receptors could be detected following their co-expression by each of co-immunoprecipitation, three different resonance energy transfer techniques and the construction of pairs of individually inactive but potentially complementary receptor G-protein alpha subunit fusion proteins. Although DOP receptor agonists and a CXCR2 antagonist had no inherent affinity for the alternative receptor when either receptor was expressed individually, use of cells that expressed a DOP opioid receptor construct constitutively, and in which expression of a CXCR2 receptor construct could be regulated, demonstrated that the CXCR2 antagonist enhanced the function of DOP receptor agonists only in the presence of CXCR2. This effect was observed for both enkephalin- and alkaloid-based opioid agonists, and the effective concentrations of the CXCR2 antagonist reflected CXCR2 receptor occupancy. Entirely equivalent results were obtained in cells in which the native DOP opioid receptor was expressed constitutively and in which expression of the isolated CXCR2 receptor could be induced. These results indicate that a CXCR2 receptor antagonist can enhance the function of agonists at a receptor for which it has no inherent direct affinity by acting as an allosteric regulator of a receptor that is a heterodimer partner for the CXCR2 receptor. These results have novel and important implications for the development and use of small-molecule therapeutics.
منابع مشابه
Identification of a novel allosteric binding site in the CXCR2 chemokine receptor.
We have shown previously that different chemical classes of small-molecule antagonists of the human chemokine CXCR2 receptor interact with distinct binding sites of the receptor. Although an intracellular binding site for diarylurea CXCR2 antagonists, such as N-(2-bromophenyl)-N'-(7-cyano-1H-benzotriazol-4-yl)urea (SB265610), and thiazolopyrimidine compounds was recently mapped by mutagenesis s...
متن کاملNonpeptidergic allosteric antagonists differentially bind to the CXCR2 chemokine receptor.
The chemokine receptor CXCR2 is involved in different inflammatory diseases, like chronic obstructive pulmonary disease, psoriasis, rheumatoid arthritis, and ulcerative colitis; therefore, it is considered an attractive drug target. Different classes of small CXCR2 antagonists have been developed. In this study, we selected seven CXCR2 antagonists from the diarylurea, imidazolylpyrimide, and th...
متن کاملChemokine Signaling via the CXCR2 Receptor Reinforces Senescence
Cells enter senescence, a state of stable proliferative arrest, in response to a variety of cellular stresses, including telomere erosion, DNA damage, and oncogenic signaling, which acts as a barrier against malignant transformation in vivo. To identify genes controlling senescence, we conducted an unbiased screen for small hairpin RNAs that extend the life span of primary human fibroblasts. He...
متن کاملActin filaments are involved in the regulation of trafficking of two closely related chemokine receptors, CXCR1 and CXCR2.
The ligand-induced internalization and recycling of chemokine receptors play a significant role in their regulation. In this study, we analyzed the involvement of actin filaments and of microtubules in the control of ligand-induced internalization and recycling of CXC chemokine receptor (CXCR)1 and CXCR2, two closely related G protein-coupled receptors that mediate ELR-expressing CXC chemokine-...
متن کاملChemokine antagonists that discriminate between interleukin-8 receptors. Selective blockers of CXCR2.
Human neutrophils express two interleukin (IL)-8 receptors, CXC chemokine receptor (CXCR) 1 and CXCR2. IL-8 with changes to the NH2-terminal ELR motif can block IL-8-induced neutrophil functions (Moser, B., Dewald, B., Barella, L., Schumacher, C., Baggiolini, M., and Clark-Lewis, I. (1993) J. Biol. Chem. 268, 7125-7128). We have now examined the effect of NH2-terminally modified analogs of IL-8...
متن کامل